Digital Analytics, Back to School ! 2 must-read

What’s in this post: 2 Books recommendations – Summer read for Digital Analytics addict: Fundamentals in Digital Analytics & broader Customer centric view

It’s been a few weeks since summer is over and we are now in Back to School mood, showing off our nice pic and how tanned we are… And here comes the fateful question “What did you do this summer?”. Well, now that I am a full grown up and am living in Asia – I don’t really get this feeling of end of Summer in September, as it’s still 30 degrees in Hong Kong and it’s not going to stop before November approximately and I don’t really get the fateful question anymore as in Asia July/August are month like any other ; the activity is not slower.
Calvin-book-reportAnyhow, I don’t blog in July/August and treat September as my Back to Blogging month. And instead of showing off how tanned I am, I’ll show off how studious I was this summer and share 2 books I read during my trip back to Europe this summer.

  1. Web Analytics: An Hour a Day (2007) – Author: Avinash Kaushik
  2. It Only Looks Like Magic: The Power of Big Data and Customer-Centric Digital Analytics (2013) – Authors: Jennifer Veesenmeyer, Peter Vandre, Ron Park and Andy Fisher (MERKLE)

Back to the basics with Avinash! “Web Analytics: An Hour a Day”

I had this book since a while in my bookshelf, over 5 years to be honest – eyeing me and vice versa – I finally got to read it ! Holidays and long hours flight are the best. Even if it has been published a while ago, Web analytics, one hour a day is a great book full of insights, supposedly destined to beginners but even for advanced analytics expert I believe it’s always good to take a step back and make sure that you master your basics. As this is still 400 pages to digest, and my memory would never be as organized as my Mac, I took some notes and highlighted my favorite passages of the book along the way so that I can make a book report of it later.

analytics_hour_a_day Web Analytics: An Hour a Day
Author(s) Avinash Kaushik
Summary If you are a tiny bit interested by the digital analytics world, you would have heard of Avinash Kaushik. His blog is full of ressources and when I started working in the field I spent hours reading through his posts and still do, his book – which has been renewed since this 2007 version, is a good deep dive into Digital Analytics. Avinash share his thoughts about multiple topics: data collection, data-driven organization and analytics skills and fundamentals. Even though the title mentions Web analytics, it’s not an under statement to say that beyond website analytics ; you’ll learn about search analytics, market research, testing, statiscal concepts inherent to analytics and optimization…
Best parts & tips
  1. Reporting and KPI: This section covers the best practices to do great reporting, with the best advices of all “start with desired outcomes, not reports”. In a nutshell, the author explains that the best way to design your report is to first and foremost think ahead of your strategy: what is your website goal? what is each of your pages goal is the overall strategy, starting from there you’ll design a better tagging implementation and a better report. This echoes pretty well to my article: Successful Digital Analytics Project Workflow
  2. The power of benchmarks and survey: Benchmarking and surveys are great tools to expand your measurement insights. Avinash mentions several examples of how to leverage them and why they are so useful. Benchmarking either internal or external are crucial to put context around your metrics, it’s a better way to tell the story of your figures. Some tools are listed in different sections to achieve that such as Hitwise, ComScore, Alexa…
  3. Statistical significance and Calculating Control limits: We are often challenged by our clients about the data, there is deep feeling of mistrust around the data delivered especially when the results goes against a personal opinion. And even if you are not challenged, it’s should be a core part of your own work to challenge your results and be absolutely convinced by what you are presenting. In diverse part of this book, you’ll find tools and examples of how to achieve this and rely on tangible tools to demonstrate how much your data and reports can be trusted: statistical significance calculator, sample size calculator… are some of them.
  4. I just cited a few of what’s available and was at that time relevant to me but there is more… I won’t spoil you the rest of the reading… and more especially I would advise to read the 2.0 version “Web Analytics 2.0: The Art of Online Accountability and Science of Customer Centricity

I still had a few hours flight left to burn and decided to continue my reading journey… Digital Analytics is a moving discipline and there is always to learn. So I devoted my time to this other fantastic book focusing on

advanced customer centric analytics “It Only Looks Like Magic: The Power of Big Data and Customer-Centric Digital Analytics”

The title though quite self explanatory do not give the full view of what to expect. In 168 pages, you will go through a pretty comprehensive view of steps and consideration to have when embarking into a customer centric approach to pilot your business.

it only looks It Only Looks Like Magic: The Power of Big Data and Customer-Centric Digital Analytics
Author(s) Jennifer Veesenmeyer, Peter Vandre, Ron Park and Andy Fisher (MERKLE)
Summary In their own words, the purpose of this book is to “enlighten analytic minds to the power of a fully coordinated effort to use multi-channel data to drive insights, measurement and decisioning that create optimal outcomes“. This book covers multiple notions essential to achieve this goal: best practices to capture data in a multi-channel, multi-devices/screen world, pitfalls that you’ll encounter but also top notions and basics to master before kicking off a customer centric project. Which parties should be involved, at what time and why… How to work with your IT folks, which tools and strategy to consider (MMM, Attribution, Segmentation, Optimization and Testing) etc… How different media channels are connected and what can be achieved in this mindset.
Best parts & tips
  1. Data capture: How to create an optimized cross-channel tracking ? In this section of the book, the authors point out a very important and well-know challenge of defining a unique identifier that can be used across your different data sources. This exercise is quite challenging as we know we don’t always have all access to the details of one individual in one place. How do we connect individual activity outside the website to activities onsite when the user is not identifiable – which identifiers are strong identifiers (cookies, email, telephone, IP, visitor ID…)
  2. Effective email data integration strategy, this section emphasis the importance of email data. Emailing being one of the best tool to capture individual information with the conscious agreement of the person ; it’s crucial to take advantage of this channel to better connect offline and online data. Even though emailing often comes at the end of the journey this is the chance to maximize knowledge of our customers.
  3. Mix modelling and Attribution: Top down versus Bottom up approaches. This section covers both approaches and how each of them contribute to measuring your marketing performance, but also the limitations of each of those solutions and how bad interpretation/utilization of those tools may conduct to bad media optimization strategy and why market research can supplement to a combined approach for a better “truth”.
  4. Predictive analytics, Controlled testing… I won’t spoil you the rest of the reading…

I really enjoyed those 2 books for 2 major reasons : (1) The concept and examples are really close to real business questions we have as digital analyst, both books rely on real-life scenario and do not bore you with new fuzzy and trendy concept that won’t help your daily working life. Also those books provide tools, links, how-to, case studies… you’ll finish your reading with a sense of having learnt something new and having the tools at hand to apply it (2) No linear reading. You can cherry pick the topics that interest you and read only 2 chapters if you want, although I will suggest to read it all, some chapters may not be relevant to you either because you already master it or because you just don’t need that level of details.
Hope you’ll enjoy the reading !

If you liked this article, spread the data-love…

Leave a Reply

Your email address will not be published. Required fields are marked *